This chapter is currently out of syllabus
1
JEE Main 2023 (Online) 25th January Evening Shift
+4
-1
Out of Syllabus

Let $$\Delta ,\nabla \in \{ \wedge , \vee \}$$ be such that $$\mathrm{(p \to q)\Delta (p\nabla q)}$$ is a tautology. Then

A
$$\Delta = \vee ,\nabla = \vee$$
B
$$\Delta = \vee ,\nabla = \wedge$$
C
$$\Delta = \wedge ,\nabla = \wedge$$
D
$$\Delta = \wedge ,\nabla = \vee$$
2
JEE Main 2023 (Online) 25th January Morning Shift
+4
-1
Out of Syllabus

The statement $$\left( {p \wedge \left( { \sim q} \right)} \right) \Rightarrow \left( {p \Rightarrow \left( { \sim q} \right)} \right)$$ is

A
a tautology
B
equivalent to $$\left( { \sim p} \right) \vee \left( { \sim q} \right)$$
C
D
$$p \vee q$$
3
JEE Main 2023 (Online) 24th January Evening Shift
+4
-1
Out of Syllabus

Let p and q be two statements. Then $$\sim \left( {p \wedge (p \Rightarrow \, \sim q)} \right)$$ is equivalent to

A
$$\left( { \sim p} \right) \vee q$$
B
$$p \vee \left( {p \wedge ( \sim q)} \right)$$
C
$$p \vee \left( {p \wedge q} \right)$$
D
$$p \vee \left( {\left( { \sim p} \right) \wedge q} \right)$$
4
JEE Main 2023 (Online) 24th January Morning Shift
+4
-1
Out of Syllabus

The compound statement $$\left( { \sim (P \wedge Q)} \right) \vee \left( {( \sim P) \wedge Q} \right) \Rightarrow \left( {( \sim P) \wedge ( \sim Q)} \right)$$ is equivalent to

A
$$(( \sim P) \vee Q) \wedge ( \sim Q)$$
B
$$( \sim Q) \vee P$$
C
$$(( \sim P) \vee Q) \wedge (( \sim Q) \vee P)$$
D
$$( \sim P) \vee Q$$
EXAM MAP
Medical
NEET