This chapter is currently out of syllabus
1
JEE Main 2021 (Online) 20th July Morning Shift
+4
-1
Out of Syllabus
The Boolean expression $$(p \wedge \sim q) \Rightarrow (q \vee \sim p)$$ is equivalent to :
A
$$q \Rightarrow p$$
B
$$p \Rightarrow q$$
C
$$\sim q \Rightarrow p$$
D
$$p \Rightarrow \, \sim q$$
2
JEE Main 2021 (Online) 18th March Evening Shift
+4
-1
Out of Syllabus
If P and Q are two statements, then which of the following compound statement is a tautology?
A
((P $$\Rightarrow$$ Q) $$\wedge$$ $$\sim$$ Q) $$\Rightarrow$$ (P $$\wedge$$ Q)
B
((P $$\Rightarrow$$ Q) $$\wedge$$ $$\sim$$ Q) $$\Rightarrow$$ Q
C
((P $$\Rightarrow$$ Q) $$\wedge$$ $$\sim$$ Q) $$\Rightarrow$$ P
D
((P $$\Rightarrow$$ Q) $$\wedge$$ $$\sim$$ Q) $$\Rightarrow$$ $$\sim$$ P
3
JEE Main 2021 (Online) 17th March Evening Shift
+4
-1
Out of Syllabus
If the Boolean expression $$(p \wedge q) \odot (p \otimes q)$$ is a tautology, then $$\odot$$ and $$\otimes$$ are respectively given by :
A
$$\vee , \to$$
B
$$\to$$, $$\to$$
C
$$\wedge$$, $$\vee$$
D
$$\wedge$$, $$\to$$
4
JEE Main 2021 (Online) 17th March Morning Shift
+4
-1
Out of Syllabus
If the Boolean expression (p $$\Rightarrow$$ q) $$\Leftrightarrow$$ (q * ($$\sim$$p) is a tautology, then the boolean expression (p * ($$\sim$$q)) is equivalent to :
A
q $$\Rightarrow$$ p
B
p $$\Rightarrow$$ q
C
p $$\Rightarrow$$ $$\sim$$ q
D
$$\sim$$q $$\Rightarrow$$ p
EXAM MAP
Medical
NEET