This chapter is currently out of syllabus
1
JEE Main 2021 (Online) 17th March Evening Shift
+4
-1
Out of Syllabus
If the Boolean expression $$(p \wedge q) \odot (p \otimes q)$$ is a tautology, then $$\odot$$ and $$\otimes$$ are respectively given by :
A
$$\vee , \to$$
B
$$\to$$, $$\to$$
C
$$\wedge$$, $$\vee$$
D
$$\wedge$$, $$\to$$
2
JEE Main 2021 (Online) 17th March Morning Shift
+4
-1
Out of Syllabus
If the Boolean expression (p $$\Rightarrow$$ q) $$\Leftrightarrow$$ (q * ($$\sim$$p) is a tautology, then the boolean expression (p * ($$\sim$$q)) is equivalent to :
A
q $$\Rightarrow$$ p
B
p $$\Rightarrow$$ q
C
p $$\Rightarrow$$ $$\sim$$ q
D
$$\sim$$q $$\Rightarrow$$ p
3
JEE Main 2021 (Online) 16th March Morning Shift
+4
-1
Out of Syllabus
Which of the following Boolean expression is a tautology?
A
(p $$\wedge$$ q) $$\vee$$ (p $$\to$$ q)
B
(p $$\wedge$$ q) $$\vee$$ (p $$\vee$$ q)
C
(p $$\wedge$$ q) $$\to$$ (p $$\to$$ q)
D
(p $$\wedge$$ q) $$\wedge$$ (p $$\to$$ q)
4
JEE Main 2021 (Online) 26th February Evening Shift
+4
-1
Out of Syllabus
Let F1(A, B, C) = (A $$\wedge$$ $$\sim$$ B) $$\vee$$ [$$\sim$$C $$\wedge$$ (A $$\vee$$ B)] $$\vee$$ $$\sim$$ A and
F2(A, B) = (A $$\vee$$ B) $$\vee$$ (B $$\to$$ $$\sim$$A) be two logical expressions. Then :
A
Both F1 and F2 are not tautologies
B
F1 and F2 both are tautologies
C
F1 is not a tautology but F2 is a tautology
D
F1 is a tautology but F2 is not a tautology
EXAM MAP
Medical
NEET