1
JEE Main 2022 (Online) 26th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

The acute angle between the pair of tangents drawn to the ellipse $$2 x^{2}+3 y^{2}=5$$ from the point $$(1,3)$$ is :

A
$$\tan ^{-1}\left(\frac{16}{7 \sqrt{5}}\right)$$
B
$$\tan ^{-1}\left(\frac{24}{7 \sqrt{5}}\right)$$
C
$$\tan ^{-1}\left(\frac{32}{7 \sqrt{5}}\right)$$
D
$$\tan ^{-1}\left(\frac{3+8 \sqrt{5}}{35}\right)$$
2
JEE Main 2022 (Online) 25th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the ellipse $$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$$ meets the line $$\frac{x}{7}+\frac{y}{2 \sqrt{6}}=1$$ on the $$x$$-axis and the line $$\frac{x}{7}-\frac{y}{2 \sqrt{6}}=1$$ on the $$y$$-axis, then the eccentricity of the ellipse is :

A
$$\frac{5}{7}$$
B
$$\frac{2 \sqrt{6}}{7}$$
C
$$\frac{3}{7}$$
D
$$\frac{2 \sqrt{5}}{7}$$
3
JEE Main 2022 (Online) 30th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the eccentricity of the ellipse $${x^2} + {a^2}{y^2} = 25{a^2}$$ be b times the eccentricity of the hyperbola $${x^2} - {a^2}{y^2} = 5$$, where a is the minimum distance between the curves y = ex and y = logex. Then $${a^2} + {1 \over {{b^2}}}$$ is equal to :

A
$${3 \over 2}$$
B
$${5 \over 2}$$
C
3
D
5
4
JEE Main 2022 (Online) 27th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the eccentricity of an ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$, $$a > b$$, be $${1 \over 4}$$. If this ellipse passes through the point $$\left( { - 4\sqrt {{2 \over 5}} ,3} \right)$$, then $${a^2} + {b^2}$$ is equal to :

A
29
B
31
C
32
D
34
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12