If the radius of the largest circle with centre (2,0) inscribed in the ellipse $$x^2+4y^2=36$$ is r, then 12r$$^2$$ is equal to :
Consider ellipses $$\mathrm{E}_{k}: k x^{2}+k^{2} y^{2}=1, k=1,2, \ldots, 20$$. Let $$\mathrm{C}_{k}$$ be the circle which touches the four chords joining the end points (one on minor axis and another on major axis) of the ellipse $$\mathrm{E}_{k}$$. If $$r_{k}$$ is the radius of the circle $$\mathrm{C}_{k}$$, then the value of $$\sum_\limits{k=1}^{20} \frac{1}{r_{k}^{2}}$$ is :
Let a circle of radius 4 be concentric to the ellipse $$15 x^{2}+19 y^{2}=285$$. Then the common tangents are inclined to the minor axis of the ellipse at the angle :
Let the ellipse $$E:{x^2} + 9{y^2} = 9$$ intersect the positive x and y-axes at the points A and B respectively. Let the major axis of E be a diameter of the circle C. Let the line passing through A and B meet the circle C at the point P. If the area of the triangle with vertices A, P and the origin O is $${m \over n}$$, where m and n are coprime, then $$m - n$$ is equal to :