Let a line L pass through the point of intersection of the lines $$b x+10 y-8=0$$ and $$2 x-3 y=0, \mathrm{~b} \in \mathbf{R}-\left\{\frac{4}{3}\right\}$$. If the line $$\mathrm{L}$$ also passes through the point $$(1,1)$$ and touches the circle $$17\left(x^{2}+y^{2}\right)=16$$, then the eccentricity of the ellipse $$\frac{x^{2}}{5}+\frac{y^{2}}{\mathrm{~b}^{2}}=1$$ is :
Let the focal chord of the parabola $$\mathrm{P}: y^{2}=4 x$$ along the line $$\mathrm{L}: y=\mathrm{m} x+\mathrm{c}, \mathrm{m}>0$$ meet the parabola at the points M and N. Let the line L be a tangent to the hyperbola $$\mathrm{H}: x^{2}-y^{2}=4$$. If O is the vertex of P and F is the focus of H on the positive x-axis, then the area of the quadrilateral OMFN is :
Let the hyperbola $$H: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$$ pass through the point $$(2 \sqrt{2},-2 \sqrt{2})$$. A parabola is drawn whose focus is same as the focus of $$\mathrm{H}$$ with positive abscissa and the directrix of the parabola passes through the other focus of $$\mathrm{H}$$. If the length of the latus rectum of the parabola is e times the length of the latus rectum of $$\mathrm{H}$$, where e is the eccentricity of H, then which of the following points lies on the parabola?
If the tangents drawn at the points $$\mathrm{P}$$ and $$\mathrm{Q}$$ on the parabola $$y^{2}=2 x-3$$ intersect at the point $$R(0,1)$$, then the orthocentre of the triangle $$P Q R$$ is :