Let $$\mathrm{P}\left(\frac{2 \sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}\right), \mathrm{Q}, \mathrm{R}$$ and $$\mathrm{S}$$ be four points on the ellipse $$9 x^{2}+4 y^{2}=36$$. Let $$\mathrm{PQ}$$ and $$\mathrm{RS}$$ be mutually perpendicular and pass through the origin. If $$\frac{1}{(P Q)^{2}}+\frac{1}{(R S)^{2}}=\frac{p}{q}$$, where $$p$$ and $$q$$ are coprime, then $$p+q$$ is equal to :
If the radius of the largest circle with centre (2,0) inscribed in the ellipse $$x^2+4y^2=36$$ is r, then 12r$$^2$$ is equal to :
Consider ellipses $$\mathrm{E}_{k}: k x^{2}+k^{2} y^{2}=1, k=1,2, \ldots, 20$$. Let $$\mathrm{C}_{k}$$ be the circle which touches the four chords joining the end points (one on minor axis and another on major axis) of the ellipse $$\mathrm{E}_{k}$$. If $$r_{k}$$ is the radius of the circle $$\mathrm{C}_{k}$$, then the value of $$\sum_\limits{k=1}^{20} \frac{1}{r_{k}^{2}}$$ is :
Let a circle of radius 4 be concentric to the ellipse $$15 x^{2}+19 y^{2}=285$$. Then the common tangents are inclined to the minor axis of the ellipse at the angle :