1
AIEEE 2008
+4
-1
A focus of an ellipse is at the origin. The directrix is the line $$x=4$$ and the eccentricity is $${{1 \over 2}}$$. Then the length of the semi-major axis is :
A
$${{8 \over 3}}$$
B
$${{2 \over 3}}$$
C
$${{4 \over 3}}$$
D
$${{5 \over 3}}$$
2
AIEEE 2006
+4
-1
In the ellipse, the distance between its foci is $$6$$ and minor axis is $$8$$. Then its eccentricity is :
A
$${3 \over 5}$$
B
$${1 \over 2}$$
C
$${4 \over 5}$$
D
$${1 \over {\sqrt 5 }}$$
3
AIEEE 2005
+4
-1
An ellipse has $$OB$$ as semi minor axis, $$F$$ and $$F$$' its focii and theangle $$FBF$$' is a right angle. Then the eccentricity of the ellipse is :
A
$${1 \over {\sqrt 2 }}$$
B
$${1 \over 2}$$
C
$${1 \over 4}$$
D
$${1 \over {\sqrt 3 }}$$
4
AIEEE 2004
+4
-1
The eccentricity of an ellipse, with its centre at the origin, is $${1 \over 2}$$. If one of the directrices is $$x=4$$, then the equation of the ellipse is :
A
$$4{x^2} + 3{y^2} = 1$$
B
$$3{x^2} + 4{y^2} = 12$$
C
$$4{x^2} + 3{y^2} = 12$$
D
$$3{x^2} + 4{y^2} = 1$$
EXAM MAP
Medical
NEET