1
JEE Main 2025 (Online) 28th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If the midpoint of a chord of the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$ is $(\sqrt{2}, 4 / 3)$, and the length of the chord is $\frac{2 \sqrt{\alpha}}{3}$, then $\alpha$ is :
A

26

B

18

C

22

D

20

2
JEE Main 2025 (Online) 24th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The equation of the chord, of the ellipse $\frac{x^2}{25}+\frac{y^2}{16}=1$, whose mid-point is $(3,1)$ is :

A
$5 x+16 y=31$
B
$48 x+25 y=169$
C
$4 x+122 y=134$
D
$25 x+101 y=176$
3
JEE Main 2025 (Online) 24th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the product of the focal distances of the point $\left(\sqrt{3}, \frac{1}{2}\right)$ on the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,(a>b)$, be $\frac{7}{4}$. Then the absolute difference of the eccentricities of two such ellipses is

A
$\frac{1-2 \sqrt{2}}{\sqrt{3}}$
B
$\frac{1-\sqrt{3}}{\sqrt{2}}$
C
$\frac{3-2 \sqrt{2}}{2 \sqrt{3}}$
D
$\frac{3-2 \sqrt{2}}{3 \sqrt{2}}$
4
JEE Main 2025 (Online) 23rd January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The length of the chord of the ellipse $\frac{x^2}{4}+\frac{y^2}{2}=1$, whose mid-point is $\left(1, \frac{1}{2}\right)$, is :

A
$\frac{2}{3} \sqrt{15}$
B
$\frac{1}{3} \sqrt{15}$
C
$\sqrt{15}$
D
$\frac{5}{3} \sqrt{15}$
JEE Main Subjects
EXAM MAP