Let $$P$$ be a parabola with vertex $$(2,3)$$ and directrix $$2 x+y=6$$. Let an ellipse $$E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b$$, of eccentricity $$\frac{1}{\sqrt{2}}$$ pass through the focus of the parabola $$P$$. Then, the square of the length of the latus rectum of $$E$$, is
Let $$A(\alpha, 0)$$ and $$B(0, \beta)$$ be the points on the line $$5 x+7 y=50$$. Let the point $$P$$ divide the line segment $$A B$$ internally in the ratio $$7:3$$. Let $$3 x-25=0$$ be a directrix of the ellipse $$E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$ and the corresponding focus be $$S$$. If from $$S$$, the perpendicular on the $$x$$-axis passes through $$P$$, then the length of the latus rectum of $$E$$ is equal to,
If the length of the minor axis of an ellipse is equal to half of the distance between the foci, then the eccentricity of the ellipse is :