Let the length of a latus rectum of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ be 10. If its eccentricity is the minimum value of the function $f(t) = t^2 + t + \frac{11}{12}$, $t \in \mathbb{R}$, then $a^2 + b^2$ is equal to :
Let p be the number of all triangles that can be formed by joining the vertices of a regular polygon P of n sides and q be the number of all quadrilaterals that can be formed by joining the vertices of P. If p + q = 126, then the eccentricity of the ellipse $\frac{x^2}{16} + \frac{y^2}{n} = 1$ is :
Let for two distinct values of p the lines $y=x+\mathrm{p}$ touch the ellipse $\mathrm{E}: \frac{x^2}{4^2}+\frac{y^2}{3^2}=1$ at the points A and B . Let the line $y=x$ intersect E at the points C and D . Then the area of the quadrilateral $A B C D$ is equal to :
The centre of a circle C is at the centre of the ellipse $\mathrm{E}: \frac{x^2}{\mathrm{a}^2}+\frac{y^2}{\mathrm{~b}^2}=1, \mathrm{a}>\mathrm{b}$. Let C pass through the foci $F_1$ and $F_2$ of E such that the circle $C$ and the ellipse $E$ intersect at four points. Let P be one of these four points. If the area of the triangle $\mathrm{PF}_1 \mathrm{~F}_2$ is 30 and the length of the major axis of $E$ is 17 , then the distance between the foci of $E$ is :