Let the ellipse $3x^2 + py^2 = 4$ pass through the centre $C$ of the circle $x^2 + y^2 - 2x - 4y - 11 = 0$ of radius $r$. Let $f_1, f_2$ be the focal distances of the point $C$ on the ellipse. Then $6f_1f_2 - r$ is equal to
Let the length of a latus rectum of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ be 10. If its eccentricity is the minimum value of the function $f(t) = t^2 + t + \frac{11}{12}$, $t \in \mathbb{R}$, then $a^2 + b^2$ is equal to :
Let p be the number of all triangles that can be formed by joining the vertices of a regular polygon P of n sides and q be the number of all quadrilaterals that can be formed by joining the vertices of P. If p + q = 126, then the eccentricity of the ellipse $\frac{x^2}{16} + \frac{y^2}{n} = 1$ is :
Let for two distinct values of p the lines $y=x+\mathrm{p}$ touch the ellipse $\mathrm{E}: \frac{x^2}{4^2}+\frac{y^2}{3^2}=1$ at the points A and B . Let the line $y=x$ intersect E at the points C and D . Then the area of the quadrilateral $A B C D$ is equal to :