If the ellipse $$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$$ meets the line $$\frac{x}{7}+\frac{y}{2 \sqrt{6}}=1$$ on the $$x$$-axis and the line $$\frac{x}{7}-\frac{y}{2 \sqrt{6}}=1$$ on the $$y$$-axis, then the eccentricity of the ellipse is :
Let the eccentricity of the ellipse $${x^2} + {a^2}{y^2} = 25{a^2}$$ be b times the eccentricity of the hyperbola $${x^2} - {a^2}{y^2} = 5$$, where a is the minimum distance between the curves y = ex and y = logex. Then $${a^2} + {1 \over {{b^2}}}$$ is equal to :
Let the eccentricity of an ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$, $$a > b$$, be $${1 \over 4}$$. If this ellipse passes through the point $$\left( { - 4\sqrt {{2 \over 5}} ,3} \right)$$, then $${a^2} + {b^2}$$ is equal to :
If m is the slope of a common tangent to the curves $${{{x^2}} \over {16}} + {{{y^2}} \over 9} = 1$$ and $${x^2} + {y^2} = 12$$, then $$12{m^2}$$ is equal to :