1
JEE Main 2022 (Online) 30th June Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let m and M respectively be the minimum and the maximum values of $$f(x) = {\sin ^{ - 1}}2x + \sin 2x + {\cos ^{ - 1}}2x + \cos 2x,\,x \in \left[ {0,{\pi \over 8}} \right]$$. Then m + M is equal to :

A
$$1 + \sqrt 2 + \pi $$
B
$$\left( {1 + \sqrt 2 } \right)\pi $$
C
$$\pi + \sqrt 2 $$
D
$$1 + \pi $$
2
JEE Main 2022 (Online) 30th June Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let $$\alpha = \tan \left( {{{5\pi } \over {16}}\sin \left( {2{{\cos }^{ - 1}}\left( {{1 \over {\sqrt 5 }}} \right)} \right)} \right)$$ and $$\beta = \cos \left( {{{\sin }^{ - 1}}\left( {{4 \over 5}} \right) + {{\sec }^{ - 1}}\left( {{5 \over 3}} \right)} \right)$$ where the inverse trigonometric functions take principal values. Then, the equation whose roots are $$\alpha$$ and $$\beta$$ is :

A
$$15{x^2} - 8x - 7 = 0$$
B
$$5{x^2} - 12x + 7 = 0$$
C
$$25{x^2} - 18x - 7 = 0$$
D
$$25{x^2} - 32x + 7 = 0$$
3
JEE Main 2022 (Online) 27th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The value of $$\cot \left( {\sum\limits_{n = 1}^{50} {{{\tan }^{ - 1}}\left( {{1 \over {1 + n + {n^2}}}} \right)} } \right)$$ is

A
$${{26} \over {25}}$$
B
$${{25} \over {26}}$$
C
$${{50} \over {51}}$$
D
$${{52} \over {51}}$$
4
JEE Main 2022 (Online) 27th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$${\sin ^1}\left( {\sin {{2\pi } \over 3}} \right) + {\cos ^{ - 1}}\left( {\cos {{7\pi } \over 6}} \right) + {\tan ^{ - 1}}\left( {\tan {{3\pi } \over 4}} \right)$$ is equal to:

A
$${{11\pi } \over {12}}$$
B
$${{17\pi } \over {12}}$$
C
$${{31\pi } \over {12}}$$
D
$$-$$$${{3\pi } \over {4}}$$
JEE Main Subjects
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEE
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Medical
NEET