1
JEE Main 2024 (Online) 27th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Considering only the principal values of inverse trigonometric functions, the number of positive real values of $$x$$ satisfying $$\tan ^{-1}(x)+\tan ^{-1}(2 x)=\frac{\pi}{4}$$ is :

A
more than 2
B
2
C
0
D
1
2
JEE Main 2023 (Online) 15th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If the domain of the function

$f(x)=\log _{e}\left(4 x^{2}+11 x+6\right)+\sin ^{-1}(4 x+3)+\cos ^{-1}\left(\frac{10 x+6}{3}\right)$ is $(\alpha, \beta]$, then

$36|\alpha+\beta|$ is equal to :
A
72
B
54
C
45
D
63
3
JEE Main 2023 (Online) 1st February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$S = \left\{ {x \in R:0 < x < 1\,\mathrm{and}\,2{{\tan }^{ - 1}}\left( {{{1 - x} \over {1 + x}}} \right) = {{\cos }^{ - 1}}\left( {{{1 - {x^2}} \over {1 + {x^2}}}} \right)} \right\}$$.

If $$\mathrm{n(S)}$$ denotes the number of elements in $$\mathrm{S}$$ then :

A
$$\mathrm{n}(\mathrm{S})=0$$
B
$$\mathrm{n}(\mathrm{S})=1$$ and only one element in $$\mathrm{S}$$ is less than $$\frac{1}{2}$$.
C
$$\mathrm{n}(\mathrm{S})=1$$ and the elements in $$\mathrm{S}$$ is more than $$\frac{1}{2}$$.
D
$$\mathrm{n}(\mathrm{S})=1$$ and the element in $$\mathrm{S}$$ is less than $$\frac{1}{2}$$.
4
JEE Main 2023 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$S$$ be the set of all solutions of the equation $$\cos ^{-1}(2 x)-2 \cos ^{-1}\left(\sqrt{1-x^{2}}\right)=\pi, x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$$. Then $$\sum_\limits{x \in S} 2 \sin ^{-1}\left(x^{2}-1\right)$$ is equal to :

A
$$\pi-2 \sin ^{-1}\left(\frac{\sqrt{3}}{4}\right)$$
B
$$\pi-\sin ^{-1}\left(\frac{\sqrt{3}}{4}\right)$$
C
$$\frac{-2 \pi}{3}$$
D
None
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12