Considering only the principal values of the inverse trigonometric functions, the domain of the function $$f(x)=\cos ^{-1}\left(\frac{x^{2}-4 x+2}{x^{2}+3}\right)$$ is :
Let $$\alpha, \beta$$ and $$\gamma$$ be three positive real numbers. Let $$f(x)=\alpha x^{5}+\beta x^{3}+\gamma x, x \in \mathbf{R}$$ and $$g: \mathbf{R} \rightarrow \mathbf{R}$$ be such that $$g(f(x))=x$$ for all $$x \in \mathbf{R}$$. If $$\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots, \mathrm{a}_{\mathrm{n}}$$ be in arithmetic progression with mean zero, then the value of $$f\left(g\left(\frac{1}{\mathrm{n}} \sum\limits_{i=1}^{\mathrm{n}} f\left(\mathrm{a}_{i}\right)\right)\right)$$ is equal to :
The domain of the function $$f(x)=\sin ^{-1}\left[2 x^{2}-3\right]+\log _{2}\left(\log _{\frac{1}{2}}\left(x^{2}-5 x+5\right)\right)$$, where [t] is the greatest integer function, is :
Let $$f, g: \mathbb{N}-\{1\} \rightarrow \mathbb{N}$$ be functions defined by $$f(a)=\alpha$$, where $$\alpha$$ is the maximum of the powers of those primes $$p$$ such that $$p^{\alpha}$$ divides $$a$$, and $$g(a)=a+1$$, for all $$a \in \mathbb{N}-\{1\}$$. Then, the function $$f+g$$ is