1
JEE Main 2021 (Online) 26th February Morning Shift
MCQ (Single Correct Answer)
+4
-1
If $${{{{\sin }^1}x} \over a} = {{{{\cos }^{ - 1}}x} \over b} = {{{{\tan }^{ - 1}}y} \over c}$$; $$0 < x < 1$$,
then the value of $$\cos \left( {{{\pi c} \over {a + b}}} \right)$$ is :
A
$${{1 - {y^2}} \over {2y}}$$
B
$${{1 - {y^2}} \over {y\sqrt y }}$$
C
$$1 - {y^2}$$
D
$${{1 - {y^2}} \over {1 + {y^2}}}$$
2
JEE Main 2021 (Online) 25th February Evening Shift
MCQ (Single Correct Answer)
+4
-1
cosec$$\left[ {2{{\cot }^{ - 1}}(5) + {{\cos }^{ - 1}}\left( {{4 \over 5}} \right)} \right]$$ is equal to :
A
$${{75} \over {56}}$$
B
$${{65} \over {56}}$$
C
$${{56} \over {33}}$$
D
$${{65} \over {33}}$$
3
JEE Main 2021 (Online) 24th February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
A possible value of $$\tan \left( {{1 \over 4}{{\sin }^{ - 1}}{{\sqrt {63} } \over 8}} \right)$$ is :
A
$$\sqrt 7 - 1$$
B
$${1 \over {\sqrt 7 }}$$
C
$$2\sqrt 2 - 1$$
D
$${1 \over {2\sqrt 2 }}$$
4
JEE Main 2020 (Online) 5th September Morning Slot
MCQ (Single Correct Answer)
+4
-1
If S is the sum of the first 10 terms of the series

$${\tan ^{ - 1}}\left( {{1 \over 3}} \right) + {\tan ^{ - 1}}\left( {{1 \over 7}} \right) + {\tan ^{ - 1}}\left( {{1 \over {13}}} \right) + {\tan ^{ - 1}}\left( {{1 \over {21}}} \right) + ....$$

then tan(S) is equal to :
A
$${10 \over {11}}$$
B
$${5 \over {11}}$$
C
-$${6 \over {5}}$$
D
$${5 \over {6}}$$
JEE Main Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12