1
JEE Main 2021 (Online) 26th February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $${{{{\sin }^1}x} \over a} = {{{{\cos }^{ - 1}}x} \over b} = {{{{\tan }^{ - 1}}y} \over c}$$; $$0 < x < 1$$,
then the value of $$\cos \left( {{{\pi c} \over {a + b}}} \right)$$ is :
A
$${{1 - {y^2}} \over {2y}}$$
B
$${{1 - {y^2}} \over {y\sqrt y }}$$
C
$$1 - {y^2}$$
D
$${{1 - {y^2}} \over {1 + {y^2}}}$$
2
JEE Main 2021 (Online) 25th February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
cosec$$\left[ {2{{\cot }^{ - 1}}(5) + {{\cos }^{ - 1}}\left( {{4 \over 5}} \right)} \right]$$ is equal to :
A
$${{75} \over {56}}$$
B
$${{65} \over {56}}$$
C
$${{56} \over {33}}$$
D
$${{65} \over {33}}$$
3
JEE Main 2021 (Online) 24th February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
A possible value of $$\tan \left( {{1 \over 4}{{\sin }^{ - 1}}{{\sqrt {63} } \over 8}} \right)$$ is :
A
$$\sqrt 7 - 1$$
B
$${1 \over {\sqrt 7 }}$$
C
$$2\sqrt 2 - 1$$
D
$${1 \over {2\sqrt 2 }}$$
4
JEE Main 2020 (Online) 5th September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If S is the sum of the first 10 terms of the series

$${\tan ^{ - 1}}\left( {{1 \over 3}} \right) + {\tan ^{ - 1}}\left( {{1 \over 7}} \right) + {\tan ^{ - 1}}\left( {{1 \over {13}}} \right) + {\tan ^{ - 1}}\left( {{1 \over {21}}} \right) + ....$$

then tan(S) is equal to :
A
$${10 \over {11}}$$
B
$${5 \over {11}}$$
C
-$${6 \over {5}}$$
D
$${5 \over {6}}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12