If $\alpha>\beta>\gamma>0$, then the expression $\cot ^{-1}\left\{\beta+\frac{\left(1+\beta^2\right)}{(\alpha-\beta)}\right\}+\cot ^{-1}\left\{\gamma+\frac{\left(1+\gamma^2\right)}{(\beta-\gamma)}\right\}+\cot ^{-1}\left\{\alpha+\frac{\left(1+\alpha^2\right)}{(\gamma-\alpha)}\right\}$ is equal to :
If $\frac{\pi}{2} \leq x \leq \frac{3 \pi}{4}$, then $\cos ^{-1}\left(\frac{12}{13} \cos x+\frac{5}{13} \sin x\right)$ is equal to
Using the principal values of the inverse trigonometric functions, the sum of the maximum and the minimum values of $16\left(\left(\sec ^{-1} x\right)^2+\left(\operatorname{cosec}^{-1} x\right)^2\right)$ is :
Given that the inverse trigonometric function assumes principal values only. Let $$x, y$$ be any two real numbers in $$[-1,1]$$ such that $$\cos ^{-1} x-\sin ^{-1} y=\alpha, \frac{-\pi}{2} \leq \alpha \leq \pi$$. Then, the minimum value of $$x^2+y^2+2 x y \sin \alpha$$ is