1
JEE Main 2019 (Online) 9th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If $${\cos ^{ - 1}}\left( {{2 \over {3x}}} \right) + {\cos ^{ - 1}}\left( {{3 \over {4x}}} \right) = {\pi \over 2}$$ (x > $$3 \over 4$$), then x is equal to :
A
$${{\sqrt {145} } \over {10}}$$
B
$${{\sqrt {145} } \over {11}}$$
C
$${{\sqrt {145} } \over {12}}$$
D
$${{\sqrt {146} } \over {12}}$$
2
JEE Main 2017 (Online) 9th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
A value of x satisfying the equation sin[cot−1 (1+ x)] = cos [tan−1 x], is :
A
$$ - {1 \over 2}$$
B
$$-$$ 1
C
0
D
$$ {1 \over 2}$$
3
JEE Main 2017 (Online) 8th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of tan-1 $$\left[ {{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} } \over {\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right],$$ $$\left| x \right| < {1 \over 2},x \ne 0,$$ is equal to :
A
$${\pi \over 4} + {1 \over 2}{\cos ^{ - 1}}\,{x^2}$$
B
$${\pi \over 4} + {\cos ^{ - 1}}\,{x^2}$$
C
$${\pi \over 4} - {1 \over 2}{\cos ^{ - 1}}\,{x^2}$$
D
$${\pi \over 4} - {\cos ^{ - 1}}\,{x^2}$$
4
JEE Main 2015 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $${\tan ^{ - 1}}y = {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {{{2x} \over {1 - {x^2}}}} \right),$$
where $$\left| x \right| < {1 \over {\sqrt 3 }}.$$ Then a value of $$y$$ is :
A
$${{3x - {x^3}} \over {1 + 3{x^2}}}$$
B
$${{3x + {x^3}} \over {1 + 3{x^2}}}$$
C
$${{3x - {x^3}} \over {1 - 3{x^2}}}$$
D
$${{3x + {x^3}} \over {1 - 3{x^2}}}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12