1
JEE Main 2022 (Online) 28th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Considering the principal values of the inverse trigonometric functions, the sum of all the solutions of the equation $$\cos ^{-1}(x)-2 \sin ^{-1}(x)=\cos ^{-1}(2 x)$$ is equal to :

A
0
B
1
C
$$\frac{1}{2}$$
D
$$-\frac{1}{2}$$
2
JEE Main 2022 (Online) 26th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$0 < x < {1 \over {\sqrt 2 }}$$ and $${{{{\sin }^{ - 1}}x} \over \alpha } = {{{{\cos }^{ - 1}}x} \over \beta }$$, then the value of $$\sin \left( {{{2\pi \alpha } \over {\alpha + \beta }}} \right)$$ is

A
$$4 \sqrt{\left(1-x^{2}\right)}\left(1-2 x^{2}\right)$$
B
$$4 x \sqrt{\left(1-x^{2}\right)}\left(1-2 x^{2}\right)$$
C
$$2 x \sqrt{\left(1-x^{2}\right)}\left(1-4 x^{2}\right)$$
D
$$4 \sqrt{\left(1-x^{2}\right)}\left(1-4 x^{2}\right)$$
3
JEE Main 2022 (Online) 26th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$\tan \left(2 \tan ^{-1} \frac{1}{5}+\sec ^{-1} \frac{\sqrt{5}}{2}+2 \tan ^{-1} \frac{1}{8}\right)$$ is equal to :

A
1
B
2
C
$$\frac{1}{4}$$
D
$$\frac{5}{4}$$
4
JEE Main 2022 (Online) 30th June Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let m and M respectively be the minimum and the maximum values of $$f(x) = {\sin ^{ - 1}}2x + \sin 2x + {\cos ^{ - 1}}2x + \cos 2x,\,x \in \left[ {0,{\pi \over 8}} \right]$$. Then m + M is equal to :

A
$$1 + \sqrt 2 + \pi $$
B
$$\left( {1 + \sqrt 2 } \right)\pi $$
C
$$\pi + \sqrt 2 $$
D
$$1 + \pi $$
JEE Main Subjects
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEE
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Medical
NEET