$${\sin ^1}\left( {\sin {{2\pi } \over 3}} \right) + {\cos ^{ - 1}}\left( {\cos {{7\pi } \over 6}} \right) + {\tan ^{ - 1}}\left( {\tan {{3\pi } \over 4}} \right)$$ is equal to :
If the inverse trigonometric functions take principal values then
$${\cos ^{ - 1}}\left( {{3 \over {10}}\cos \left( {{{\tan }^{ - 1}}\left( {{4 \over 3}} \right)} \right) + {2 \over 5}\sin \left( {{{\tan }^{ - 1}}\left( {{4 \over 3}} \right)} \right)} \right)$$ is equal to :
The value of $${\tan ^{ - 1}}\left( {{{\cos \left( {{{15\pi } \over 4}} \right) - 1} \over {\sin \left( {{\pi \over 4}} \right)}}} \right)$$ is equal to :
Let $$x * y = {x^2} + {y^3}$$ and $$(x * 1) * 1 = x * (1 * 1)$$.
Then a value of $$2{\sin ^{ - 1}}\left( {{{{x^4} + {x^2} - 2} \over {{x^4} + {x^2} + 2}}} \right)$$ is :