1
JEE Main 2025 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The value of $ \cot^{-1} \left( \frac{\sqrt{1 + \tan^2(2)} - 1}{\tan(2)} \right) - \cot^{-1} \left( \frac{\sqrt{1 + \tan^2\left(\frac{1}{2}\right)} + 1}{\tan\left(\frac{1}{2}\right)} \right) $ is equal to

A

$ \pi - \frac{3}{2} $

B

$ \pi + \frac{5}{2} $

C

$ \pi - \frac{5}{4} $

D

$ \pi + \frac{3}{2} $

2
JEE Main 2025 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The sum of the infinite series $\cot ^{-1}\left(\frac{7}{4}\right)+\cot ^{-1}\left(\frac{19}{4}\right)+\cot ^{-1}\left(\frac{39}{4}\right)+\cot ^{-1}\left(\frac{67}{4}\right)+\ldots$. is :

A
$\frac{\pi}{2}+\cot ^{-1}\left(\frac{1}{2}\right)$
B
$\frac{\pi}{2}-\cot ^{-1}\left(\frac{1}{2}\right)$
C
$\frac{\pi}{2}-\tan ^{-1}\left(\frac{1}{2}\right)$
D
$\frac{\pi}{2}+\tan ^{-1}\left(\frac{1}{2}\right)$
3
JEE Main 2025 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Considering the principal values of the inverse trigonometric functions, $\sin ^{-1}\left(\frac{\sqrt{3}}{2} x+\frac{1}{2} \sqrt{1-x^2}\right),-\frac{1}{2}< x<\frac{1}{\sqrt{2}}$, is equal to

A
$\frac{-5 \pi}{6}-\sin ^{-1} x$
B
$\frac{5 \pi}{6}-\sin ^{-1} x$
C
$\frac{\pi}{6}+\sin ^{-1} x$
D
$\frac{\pi}{4}+\sin ^{-1} x$
4
JEE Main 2025 (Online) 28th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let [x] denote the greatest integer less than or equal to x. Then the domain of $ f(x) = \sec^{-1}(2[x] + 1) $ is:

A

$(-\infty, \infty)$

B

$(-\infty, \infty)- \{0\}$

C

$(-\infty, -1] \cup [0, \infty)$

D

$(-\infty, -1] \cup [1, \infty)$

JEE Main Subjects
EXAM MAP