1
JEE Main 2019 (Online) 11th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let x, y be positive real numbers and m, n positive integers. The maximum value of the expression $${{{x^m}{y^n}} \over {\left( {1 + {x^{2m}}} \right)\left( {1 + {y^{2n}}} \right)}}$$ is :
A
$${1 \over 2}$$
B
$${1 \over 4}$$
C
$${{m + n} \over {6mn}}$$
D
1
2
JEE Main 2019 (Online) 11th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The sum of an infinite geometric series with positive terms is 3 and the sum of the cubes of its terms is $${{27} \over {19}}$$.Then the common ratio of this series is :
A
$${4 \over 9}$$
B
$${1 \over 3}$$
C
$${2 \over 3}$$
D
$${2 \over 9}$$
3
JEE Main 2019 (Online) 11th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let a1, a2, . . . . . ., a10 be a G.P.    If $${{{a_3}} \over {{a_1}}} = 25,$$ then $${{{a_9}} \over {{a_5}}}$$ equals
A
53
B
2(52)
C
4(52)
D
54
4
JEE Main 2019 (Online) 10th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let a1, a2, a3, ..... a10 be in G.P. with ai > 0 for i = 1, 2, ….., 10 and S be the set of pairs (r, k), r, k $$ \in $$ N (the set of natural numbers) for which

$$\left| {\matrix{ {{{\log }_e}\,{a_1}^r{a_2}^k} & {{{\log }_e}\,{a_2}^r{a_3}^k} & {{{\log }_e}\,{a_3}^r{a_4}^k} \cr {{{\log }_e}\,{a_4}^r{a_5}^k} & {{{\log }_e}\,{a_5}^r{a_6}^k} & {{{\log }_e}\,{a_6}^r{a_7}^k} \cr {{{\log }_e}\,{a_7}^r{a_8}^k} & {{{\log }_e}\,{a_8}^r{a_9}^k} & {{{\log }_e}\,{a_9}^r{a_{10}}^k} \cr } } \right|$$ $$=$$ 0.

Then the number of elements in S, is -
A
10
B
4
C
2
D
infinitely many
JEE Main Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12