1
JEE Main 2018 (Offline)
+4
-1
Out of Syllabus
Let A be the sum of the first 20 terms and B be the sum of the first 40 terms of the series
12 + 2.22 + 32 + 2.42 + 52 + 2.62 ...........
If B - 2A = 100$$\lambda$$, then $$\lambda$$ is equal to
A
496
B
232
C
248
D
464
2
JEE Main 2018 (Offline)
+4
-1
Let $${a_1}$$, $${a_2}$$, $${a_3}$$, ......... ,$${a_{49}}$$ be in A.P. such that

$$\sum\limits_{k = 0}^{12} {{a_{4k + 1}}} = 416$$ and $${a_9} + {a_{43}} = 66$$.

$$a_1^2 + a_2^2 + ....... + a_{17}^2 = 140m$$, then m is equal to
A
33
B
66
C
68
D
34
3
JEE Main 2018 (Online) 15th April Evening Slot
+4
-1
If  a,   b,   c  are in A.P. and  a2,  b2,  c2 are in G.P. such that
a < b < c and   a + b + c = $${3 \over 4},$$ then the value of a is :
A
$${1 \over 4} - {1 \over {4\sqrt 2 }}$$
B
$${1 \over 4} - {1 \over {3\sqrt 2 }}$$
C
$${1 \over 4} - {1 \over {2\sqrt 2 }}$$
D
$${1 \over 4} - {1 \over {\sqrt 2 }}$$
4
JEE Main 2018 (Online) 15th April Evening Slot
+4
-1
Out of Syllabus
Let    An = $$\left( {{3 \over 4}} \right) - {\left( {{3 \over 4}} \right)^2} + {\left( {{3 \over 4}} \right)^3}$$ $$-$$. . . . . + ($$-$$1)n-1 $${\left( {{3 \over 4}} \right)^n}$$    and    Bn = 1 $$-$$ An.
Then, the least dd natural numbr p, so that Bn > An , for all n$$\ge$$ p, is :
A
9
B
7
C
11
D
5
EXAM MAP
Medical
NEET