If the sum of the first ten terms of the series $${\left( {1{3 \over 5}} \right)^2} + {\left( {2{2 \over 5}} \right)^2} + {\left( {3{1 \over 5}} \right)^2} + {4^2} + {\left( {4{4 \over 5}} \right)^2} + .......is\,{{16} \over 5}m,$$ then m is equal to :
If m is the A.M. of two distinct real numbers l and n $$(l,n > 1)$$ and $${G_1},{G_2}$$ and $${G_3}$$ are three geometric means between $$l$$ and n, then $$G_1^4\, + 2G_2^4\, + G_3^4$$ equals: