or $${1 \over 2}S = {{1/4} \over {1 - 1/2}} = {1 \over 2} \Rightarrow S = 1$$
$$\therefore$$ $$P = {2^S} = 2$$
3
AIEEE 2002
MCQ (Single Correct Answer)
l, m, n are the $${p^{th}}$$, $${q^{th}}$$ and $${r^{th}}$$ term of a G.P all positive, $$then\,\left| {\matrix{
{\log \,l} & p & 1 \cr
{\log \,m} & q & 1 \cr
{\log \,n} & r & 1 \cr
} } \right|\,equals$$