The period of $${\sin ^2}\theta $$ is
Explanation
The period of $${\sin ^2}\theta $$ is = $$\pi $$
Note :
(1) When $$n$$ is odd then the period of $${\sin ^n}\theta $$, $${\cos ^n}\theta $$, $${\csc ^n}\theta $$, $${\sec ^n}\theta $$ = $$2\pi $$
(2) When $$n$$ is even then the period of $${\sin ^n}\theta $$, $${\cos ^n}\theta $$, $${\csc ^n}\theta $$, $${\sec ^n}\theta $$ = $$\pi $$
(3) When $$n$$ is even/odd then the period of $${\tan ^n}\theta $$, $${\cot ^n}\theta $$ = $$\pi $$
(3) When $$n$$ is even/odd then the period of $$\left| {{{\sin }^n}\theta } \right|$$, $$\left| {{{\cos }^n}\theta } \right|$$, $$\left| {{{\csc }^n}\theta } \right|$$, $$\left| {{{\sec }^n}\theta } \right|$$, $$\left| {{{\tan }^n}\theta } \right|$$, $$\left| {{{\cot }^n}\theta } \right|$$ = $$\pi $$