1
JEE Main 2023 (Online) 6th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the sets A and B denote the domain and range respectively of the function $$f(x)=\frac{1}{\sqrt{\lceil x\rceil-x}}$$, where $$\lceil x\rceil$$ denotes the smallest integer greater than or equal to $$x$$. Then among the statements

(S1) : $$A \cap B=(1, \infty)-\mathbb{N}$$ and

(S2) : $$A \cup B=(1, \infty)$$

A
only $$(\mathrm{S} 2)$$ is true
B
only (S1) is true
C
neither (S1) nor (S2) is true
D
both (S1) and (S2) are true
2
JEE Main 2023 (Online) 1st February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f:\mathbb{R}-{0,1}\to \mathbb{R}$$ be a function such that $$f(x)+f\left(\frac{1}{1-x}\right)=1+x$$. Then $$f(2)$$ is equal to

A
$$\frac{9}{4}$$
B
$$\frac{7}{4}$$
C
$$\frac{7}{3}$$
D
$$\frac{9}{2}$$
3
JEE Main 2023 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f(x) = \left| {\matrix{ {1 + {{\sin }^2}x} & {{{\cos }^2}x} & {\sin 2x} \cr {{{\sin }^2}x} & {1 + {{\cos }^2}x} & {\sin 2x} \cr {{{\sin }^2}x} & {{{\cos }^2}x} & {1 + \sin 2x} \cr } } \right|,\,x \in \left[ {{\pi \over 6},{\pi \over 3}} \right]$$. If $$\alpha$$ and $$\beta$$ respectively are the maximum and the minimum values of $$f$$, then

A
$${\alpha ^2} - {\beta ^2} = 4\sqrt 3 $$
B
$${\beta ^2} - 2\sqrt \alpha = {{19} \over 4}$$
C
$${\beta ^2} + 2\sqrt \alpha = {{19} \over 4}$$
D
$${\alpha ^2} + {\beta ^2} = {9 \over 2}$$
4
JEE Main 2023 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $f: \mathbb{R}-\{2,6\} \rightarrow \mathbb{R}$ be real valued function

defined as $f(x)=\frac{x^2+2 x+1}{x^2-8 x+12}$.

Then range of $f$ is
A
$ \left(-\infty,-\frac{21}{4}\right] \cup[1, \infty) $
B
$\left(-\infty,-\frac{21}{4}\right) \cup(0, \infty) $
C
$\left(-\infty,-\frac{21}{4}\right] \cup[0, \infty) $
D
$\left(-\infty,-\frac{21}{4}\right] \cup\left[\frac{21}{4}, \infty\right)$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12