1
JEE Main 2020 (Online) 9th January Evening Slot
+4
-1
Let a – 2b + c = 1.

If $$f(x)=\left| {\matrix{ {x + a} & {x + 2} & {x + 1} \cr {x + b} & {x + 3} & {x + 2} \cr {x + c} & {x + 4} & {x + 3} \cr } } \right|$$, then:
A
ƒ(50) = 1
B
ƒ(–50) = –1
C
ƒ(50) = –501
D
ƒ(–50) = 501
2
JEE Main 2020 (Online) 8th January Evening Slot
+4
-1
Let ƒ : (1, 3) $$\to$$ R be a function defined by
$$f(x) = {{x\left[ x \right]} \over {1 + {x^2}}}$$ , where [x] denotes the greatest integer $$\le$$ x. Then the range of ƒ is
A
$$\left( {{2 \over 5},{1 \over 2}} \right) \cup \left( {{3 \over 4},{4 \over 5}} \right]$$
B
$$\left( {{3 \over 5},{4 \over 5}} \right)$$
C
$$\left( {{2 \over 5},{4 \over 5}} \right]$$
D
$$\left( {{2 \over 5},{3 \over 5}} \right] \cup \left( {{3 \over 4},{4 \over 5}} \right)$$
3
JEE Main 2020 (Online) 8th January Morning Slot
+4
-1
The inverse function of

f(x) = $${{{8^{2x}} - {8^{ - 2x}}} \over {{8^{2x}} + {8^{ - 2x}}}}$$, x $$\in$$ (-1, 1), is :
A
$${1 \over 4}{\log _e}\left( {{{1 - x} \over {1 + x}}} \right)$$
B
$${1 \over 4}\left( {{{\log }_8}e} \right){\log _e}\left( {{{1 - x} \over {1 + x}}} \right)$$
C
$${1 \over 4}\left( {{{\log }_8}e} \right){\log _e}\left( {{{1 + x} \over {1 - x}}} \right)$$
D
$${1 \over 4}{\log _e}\left( {{{1 + x} \over {1 - x}}} \right)$$
4
JEE Main 2020 (Online) 7th January Morning Slot
+4
-1
If g(x) = x2 + x - 1 and
(goƒ) (x) = 4x2 - 10x + 5, then ƒ$$\left( {{5 \over 4}} \right)$$ is equal to:
A
$${1 \over 2}$$
B
$${3 \over 2}$$
C
-$${1 \over 2}$$
D
-$${3 \over 2}$$
JEE Main Subjects
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination