1
JEE Main 2020 (Online) 6th September Morning Slot
MCQ (Single Correct Answer)
+4
-1
If f(x + y) = f(x)f(y) and $$\sum\limits_{x = 1}^\infty {f\left( x \right)} = 2$$ , x, y $$\in$$ N, where N is the set of all natural number, then the value of $${{f\left( 4 \right)} \over {f\left( 2 \right)}}$$ is :
A
$${2 \over 3}$$
B
$${1 \over 9}$$
C
$${1 \over 3}$$
D
$${4 \over 9}$$
2
JEE Main 2020 (Online) 2nd September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Let f : R $$\to$$ R be a function which satisfies
f(x + y) = f(x) + f(y) $$\forall$$ x, y $$\in$$ R. If f(1) = 2 and
g(n) = $$\sum\limits_{k = 1}^{\left( {n - 1} \right)} {f\left( k \right)}$$, n $$\in$$ N then the value of n, for which g(n) = 20, is :
A
20
B
9
C
5
D
4
3
JEE Main 2020 (Online) 9th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Let a – 2b + c = 1.

If $$f(x)=\left| {\matrix{ {x + a} & {x + 2} & {x + 1} \cr {x + b} & {x + 3} & {x + 2} \cr {x + c} & {x + 4} & {x + 3} \cr } } \right|$$, then:
A
ƒ(50) = 1
B
ƒ(–50) = –1
C
ƒ(50) = –501
D
ƒ(–50) = 501
4
JEE Main 2020 (Online) 8th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Let ƒ : (1, 3) $$\to$$ R be a function defined by
$$f(x) = {{x\left[ x \right]} \over {1 + {x^2}}}$$ , where [x] denotes the greatest integer $$\le$$ x. Then the range of ƒ is
A
$$\left( {{2 \over 5},{1 \over 2}} \right) \cup \left( {{3 \over 4},{4 \over 5}} \right]$$
B
$$\left( {{3 \over 5},{4 \over 5}} \right)$$
C
$$\left( {{2 \over 5},{4 \over 5}} \right]$$
D
$$\left( {{2 \over 5},{3 \over 5}} \right] \cup \left( {{3 \over 4},{4 \over 5}} \right)$$
JEE Main Subjects
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEEBITSATMHT CET
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN