1
JEE Main 2025 (Online) 28th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $f:[0,3] \rightarrow$ A be defined by $f(x)=2 x^3-15 x^2+36 x+7$ and $g:[0, \infty) \rightarrow B$ be defined by $g(x)=\frac{x^{2025}}{x^{2025}+1}$, If both the functions are onto and $S=\{ x \in Z ; x \in A$ or $x \in B \}$, then $n(S)$ is equal to :
A

29

B

31

C

30

D

36

2
JEE Main 2025 (Online) 28th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $f(x)=\frac{2^x}{2^x+\sqrt{2}}, \mathrm{x} \in \mathbb{R}$, then $\sum_\limits{\mathrm{k}=1}^{81} f\left(\frac{\mathrm{k}}{82}\right)$ is equal to

A
$82$
B
$81 \sqrt{2}$
C
$41$
D
$\frac{81}{2}$
3
JEE Main 2025 (Online) 28th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=(2+3 a) x^2+\left(\frac{a+2}{a-1}\right) x+b, a \neq 1$. If $f(x+y)=f(x)+f(\mathrm{y})+1-\frac{2}{7} x \mathrm{y}$, then the value of $28 \sum\limits_{i=1}^5|f(i)|$ is

A
735
B
675
C
715
D
545
4
JEE Main 2025 (Online) 24th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The function $f:(-\infty, \infty) \rightarrow(-\infty, 1)$, defined by $f(x)=\frac{2^x-2^{-x}}{2^x+2^{-x}}$ is :

A
One-one but not onto
B
Onto but not one-one
C
Both one-one and onto
D
Neither one-one nor onto
JEE Main Subjects
EXAM MAP