1
JEE Main 2024 (Online) 6th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the function $$f(x)=\left(\frac{1}{x}\right)^{2 x} ; x>0$$ attains the maximum value at $$x=\frac{1}{\mathrm{e}}$$ then :

A
$$\mathrm{e}^\pi<\pi^{\mathrm{e}}$$
B
$$\mathrm{e}^{2 \pi}<(2 \pi)^{\mathrm{e}}$$
C
$$(2 e)^\pi>\pi^{(2 e)}$$
D
$$\mathrm{e}^\pi>\pi^{\mathrm{e}}$$
2
JEE Main 2024 (Online) 6th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f(x)=\frac{1}{7-\sin 5 x}$$ be a function defined on $$\mathbf{R}$$. Then the range of the function $$f(x)$$ is equal to :

A
$$\left[\frac{1}{8}, \frac{1}{5}\right]$$
B
$$\left[\frac{1}{7}, \frac{1}{6}\right]$$
C
$$\left[\frac{1}{7}, \frac{1}{5}\right]$$
D
$$\left[\frac{1}{8}, \frac{1}{6}\right]$$
3
JEE Main 2024 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The function $$f(x)=\frac{x^2+2 x-15}{x^2-4 x+9}, x \in \mathbb{R}$$ is

A
both one-one and onto.
B
onto but not one-one.
C
neither one-one nor onto.
D
one-one but not onto.
4
JEE Main 2024 (Online) 5th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f, g: \mathbf{R} \rightarrow \mathbf{R}$$ be defined as :

$$f(x)=|x-1| \text { and } g(x)= \begin{cases}\mathrm{e}^x, & x \geq 0 \\ x+1, & x \leq 0 .\end{cases}$$

Then the function $$f(g(x))$$ is

A
neither one-one nor onto.
B
one-one but not onto.
C
both one-one and onto.
D
onto but not one-one.
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12