1
JEE Main 2023 (Online) 31st January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If the domain of the function $$f(x)=\frac{[x]}{1+x^{2}}$$, where $$[x]$$ is greatest integer $$\leq x$$, is $$[2,6)$$, then its range is
A
$$\left(\frac{5}{37}, \frac{2}{5}\right]-\left\{\frac{9}{29}, \frac{27}{109}, \frac{18}{89}, \frac{9}{53}\right\}$$
B
$$\left(\frac{5}{37}, \frac{2}{5}\right]$$
C
$$\left(\frac{5}{26}, \frac{2}{5}\right]$$
D
$$\left(\frac{5}{26}, \frac{2}{5}\right]-\left\{\frac{9}{29}, \frac{27}{109}, \frac{18}{89}, \frac{9}{53}\right\}$$
2
JEE Main 2023 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The range of the function $f(x)=\sqrt{3-x}+\sqrt{2+x}$ is :
A
$[2 \sqrt{2}, \sqrt{11}]$
B
$[\sqrt{5}, \sqrt{13}]$
C
$[\sqrt{2}, \sqrt{7}]$
D
$[\sqrt{5}, \sqrt{10}]$
3
JEE Main 2023 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Consider a function $$f:\mathbb{N}\to\mathbb{R}$$, satisfying $$f(1)+2f(2)+3f(3)+....+xf(x)=x(x+1)f(x);x\ge2$$ with $$f(1)=1$$. Then $$\frac{1}{f(2022)}+\frac{1}{f(2028)}$$ is equal to

A
8000
B
8400
C
8100
D
8200
4
JEE Main 2023 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The domain of $$f(x) = {{{{\log }_{(x + 1)}}(x - 2)} \over {{e^{2{{\log }_e}x}} - (2x + 3)}},x \in \mathbb{R}$$ is

A
$$( - 1,\infty ) - \{ 3\} $$
B
$$\mathbb{R} - \{ - 1,3)$$
C
$$(2,\infty ) - \{ 3\} $$
D
$$\mathbb{R} - \{ 3\} $$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12