1
JEE Main 2017 (Online) 8th April Morning Slot
+4
-1
Let f(x) = 210.x + 1 and g(x)=310.x $$-$$ 1. If (fog) (x) = x, then x is equal to :
A
$${{{3^{10}} - 1} \over {{3^{10}} - {2^{ - 10}}}}$$
B
$${{{2^{10}} - 1} \over {{2^{10}} - {3^{ - 10}}}}$$
C
$${{1 - {3^{ - 10}}} \over {{2^{10}} - {3^{ - 10}}}}$$
D
$${{1 - {2^{ - 10}}} \over {{3^{10}} - {2^{ - 10}}}}$$
2
JEE Main 2017 (Offline)
+4
-1
The function $$f:R \to \left[ { - {1 \over 2},{1 \over 2}} \right]$$ defined as

$$f\left( x \right) = {x \over {1 + {x^2}}}$$, is
A
invertible
B
injective but not surjective.
C
surjective but not injective
D
neither injective nor surjective.
3
JEE Main 2017 (Offline)
+4
-1
Let $$a$$, b, c $$\in R$$. If $$f$$(x) = ax2 + bx + c is such that
$$a$$ + b + c = 3 and $$f$$(x + y) = $$f$$(x) + $$f$$(y) + xy, $$\forall x,y \in R,$$

then $$\sum\limits_{n = 1}^{10} {f(n)}$$ is equal to
A
165
B
190
C
255
D
330
4
JEE Main 2016 (Online) 9th April Morning Slot
+4
-1
For x $$\in$$ R, x $$\ne$$ 0, Let f0(x) = $${1 \over {1 - x}}$$ and
fn+1 (x) = f0(fn(x)), n = 0, 1, 2, . . . .

Then the value of f100(3) + f1$$\left( {{2 \over 3}} \right)$$ + f2$$\left( {{3 \over 2}} \right)$$ is equal to :
A
$${8 \over 3}$$
B
$${5 \over 3}$$
C
$${4 \over 3}$$
D
$${1 \over 3}$$
EXAM MAP
Medical
NEET