1
JEE Main 2024 (Online) 31st January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$f(x)=\frac{4 x+3}{6 x-4}, x \neq \frac{2}{3}$$ and $$(f \circ f)(x)=g(x)$$, where $$g: \mathbb{R}-\left\{\frac{2}{3}\right\} \rightarrow \mathbb{R}-\left\{\frac{2}{3}\right\}$$, then $$(g ogog)(4)$$ is equal to

A
$$-4$$
B
$$\frac{19}{20}$$
C
$$-\frac{19}{20}$$
D
4
2
JEE Main 2024 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the domain of the function $$f(x)=\log _e\left(\frac{2 x+3}{4 x^2+x-3}\right)+\cos ^{-1}\left(\frac{2 x-1}{x+2}\right)$$ is $$(\alpha, \beta]$$, then the value of $$5 \beta-4 \alpha$$ is equal to

A
9
B
12
C
11
D
10
3
JEE Main 2024 (Online) 30th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the domain of the function $$f(x)=\cos ^{-1}\left(\frac{2-|x|}{4}\right)+\left\{\log _e(3-x)\right\}^{-1}$$ is $$[-\alpha, \beta)-\{\gamma\}$$, then $$\alpha+\beta+\gamma$$ is equal to :

A
11
B
12
C
9
D
8
4
JEE Main 2024 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$f(x)=\left\{\begin{array}{cc}2+2 x, & -1 \leq x < 0 \\ 1-\frac{x}{3}, & 0 \leq x \leq 3\end{array} ; g(x)=\left\{\begin{array}{cc}-x, & -3 \leq x \leq 0 \\ x, & 0 < x \leq 1\end{array}\right.\right.$$, then range of $$(f o g)(x)$$ is

A
$$[0,1)$$
B
$$[0,3)$$
C
$$(0,1]$$
D
$$[0,1]$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12