1
JEE Main 2024 (Online) 1st February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If the domain of the function

$f(x)=\frac{\sqrt{x^2-25}}{\left(4-x^2\right)}+\log _{10}\left(x^2+2 x-15\right)$ is $(-\infty, \alpha) \cup[\beta, \infty)$, then $\alpha^2+\beta^3$ is equal to :
A
140
B
175
C
125
D
150
2
JEE Main 2024 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $f: \mathbf{R} \rightarrow \mathbf{R}$ and $g: \mathbf{R} \rightarrow \mathbf{R}$ be defined as

$f(x)=\left\{\begin{array}{ll}\log _{\mathrm{e}} x, & x>0 \\ \mathrm{e}^{-x}, & x \leq 0\end{array}\right.$ and

$g(x)=\left\{\begin{array}{ll}x, & x \geqslant 0 \\ \mathrm{e}^x, & x<0\end{array}\right.$. Then, gof : $\mathbf{R} \rightarrow \mathbf{R}$ is :
A
one-one but not onto
B
neither one-one nor onto
C
onto but not one-one
D
both one-one and onto
3
JEE Main 2024 (Online) 31st January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$f(x)=\frac{4 x+3}{6 x-4}, x \neq \frac{2}{3}$$ and $$(f \circ f)(x)=g(x)$$, where $$g: \mathbb{R}-\left\{\frac{2}{3}\right\} \rightarrow \mathbb{R}-\left\{\frac{2}{3}\right\}$$, then $$(g ogog)(4)$$ is equal to

A
$$-4$$
B
$$\frac{19}{20}$$
C
$$-\frac{19}{20}$$
D
4
4
JEE Main 2024 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the domain of the function $$f(x)=\log _e\left(\frac{2 x+3}{4 x^2+x-3}\right)+\cos ^{-1}\left(\frac{2 x-1}{x+2}\right)$$ is $$(\alpha, \beta]$$, then the value of $$5 \beta-4 \alpha$$ is equal to

A
9
B
12
C
11
D
10
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12