Let $$f:\mathbb{R}\to\mathbb{R}$$ be a function defined by $$f(x) = {\log _{\sqrt m }}\{ \sqrt 2 (\sin x - \cos x) + m - 2\} $$, for some $$m$$, such that the range of $$f$$ is [0, 2]. Then the value of $$m$$ is _________
Let $$f(x) = 2{x^n} + \lambda ,\lambda \in R,n \in N$$, and $$f(4) = 133,f(5) = 255$$. Then the sum of all the positive integer divisors of $$(f(3) - f(2))$$ is
Let $$f(x)$$ be a function such that $$f(x+y)=f(x).f(y)$$ for all $$x,y\in \mathbb{N}$$. If $$f(1)=3$$ and $$\sum\limits_{k = 1}^n {f(k) = 3279} $$, then the value of n is
If $$f(x) = {{{2^{2x}}} \over {{2^{2x}} + 2}},x \in \mathbb{R}$$, then $$f\left( {{1 \over {2023}}} \right) + f\left( {{2 \over {2023}}} \right)\, + \,...\, + \,f\left( {{{2022} \over {2023}}} \right)$$ is equal to