1
JEE Main 2025 (Online) 28th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=(2+3 a) x^2+\left(\frac{a+2}{a-1}\right) x+b, a \neq 1$. If $f(x+y)=f(x)+f(\mathrm{y})+1-\frac{2}{7} x \mathrm{y}$, then the value of $28 \sum\limits_{i=1}^5|f(i)|$ is

A
735
B
675
C
715
D
545
2
JEE Main 2025 (Online) 24th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The function $f:(-\infty, \infty) \rightarrow(-\infty, 1)$, defined by $f(x)=\frac{2^x-2^{-x}}{2^x+2^{-x}}$ is :

A
One-one but not onto
B
Onto but not one-one
C
Both one-one and onto
D
Neither one-one nor onto
3
JEE Main 2025 (Online) 24th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $f(x)=\frac{2^{x+2}+16}{2^{2 x+1}+2^{x+4}+32}$. Then the value of $8\left(f\left(\frac{1}{15}\right)+f\left(\frac{2}{15}\right)+\ldots+f\left(\frac{59}{15}\right)\right)$ is equal to

A
108
B
92
C
118
D
102
4
JEE Main 2025 (Online) 23rd January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $f(x)=\log _{\mathrm{e}} x$ and $g(x)=\frac{x^4-2 x^3+3 x^2-2 x+2}{2 x^2-2 x+1}$. Then the domain of $f \circ g$ is

A
$(0, \infty)$
B
$[1, \infty)$
C
$\mathbb{R}$
D
$[0, \infty)$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12