1
JEE Main 2025 (Online) 28th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=(2+3 a) x^2+\left(\frac{a+2}{a-1}\right) x+b, a \neq 1$. If $f(x+y)=f(x)+f(\mathrm{y})+1-\frac{2}{7} x \mathrm{y}$, then the value of $28 \sum\limits_{i=1}^5|f(i)|$ is

A
735
B
675
C
715
D
545
2
JEE Main 2025 (Online) 24th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The function $f:(-\infty, \infty) \rightarrow(-\infty, 1)$, defined by $f(x)=\frac{2^x-2^{-x}}{2^x+2^{-x}}$ is :

A
One-one but not onto
B
Onto but not one-one
C
Both one-one and onto
D
Neither one-one nor onto
3
JEE Main 2025 (Online) 24th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $f(x)=\frac{2^{x+2}+16}{2^{2 x+1}+2^{x+4}+32}$. Then the value of $8\left(f\left(\frac{1}{15}\right)+f\left(\frac{2}{15}\right)+\ldots+f\left(\frac{59}{15}\right)\right)$ is equal to

A
108
B
92
C
118
D
102
4
JEE Main 2025 (Online) 23rd January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $f(x)=\log _{\mathrm{e}} x$ and $g(x)=\frac{x^4-2 x^3+3 x^2-2 x+2}{2 x^2-2 x+1}$. Then the domain of $f \circ g$ is

A
$(0, \infty)$
B
$[1, \infty)$
C
$\mathbb{R}$
D
$[0, \infty)$
JEE Main Subjects
EXAM MAP