1
JEE Main 2019 (Online) 10th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f(x) = x2 , x $$ \in $$ R. For any A $$ \subseteq $$ R, define g (A) = { x $$ \in $$ R : f(x) $$ \in $$ A}. If S = [0,4], then which one of the following statements is not true ?
A
g(f(S)) $$ \ne $$ S
B
f(g(S)) = S
C
f(g(S)) $$ \ne $$ f(S)
D
g(f(S)) = g(S)
2
JEE Main 2019 (Online) 9th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The domain of the definition of the function

$$f(x) = {1 \over {4 - {x^2}}} + {\log _{10}}({x^3} - x)$$ is
A
(-1, 0) $$ \cup $$ (1, 2) $$ \cup $$ (2, $$\infty $$)
B
(-2, -1) $$ \cup $$ (-1,0) $$ \cup $$ (2, $$\infty $$)
C
(1, 2) $$ \cup $$ (2, $$\infty $$)
D
(-1, 0) $$ \cup $$ (1,2) $$ \cup $$ (3, $$\infty $$)
3
JEE Main 2019 (Online) 9th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If the function ƒ : R – {1, –1} $$ \to $$ A defined by
ƒ(x) = $${{{x^2}} \over {1 - {x^2}}}$$ , is surjective, then A is equal to
A
R – (–1, 0)
B
R – {–1}
C
R – [–1, 0)
D
[0, $$\infty $$)
4
JEE Main 2019 (Online) 9th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$\sum\limits_{k = 1}^{10} {f(a + k) = 16\left( {{2^{10}} - 1} \right)} $$ where the function ƒ satisfies
ƒ(x + y) = ƒ(x)ƒ(y) for all natural numbers x, y and ƒ(1) = 2. then the natural number 'a' is
A
2
B
16
C
4
D
3
JEE Main Subjects
EXAM MAP