1
JEE Main 2016 (Offline)
+4
-1
The eccentricity of the hyperbola whose length of the latus rectum is equal to $$8$$ and the length of its conjugate axis is equal to half of the distance between its foci, is :
A
$${2 \over {\sqrt 3 }}$$
B
$${\sqrt 3 }$$
C
$${{4 \over 3}}$$
D
$${4 \over {\sqrt 3 }}$$
2
JEE Main 2016 (Offline)
+4
-1
Let $$P$$ be the point on the parabola, $${{y^2} = 8x}$$ which is at a minimum distance from the centre $$C$$ of the circle, $${x^2} + {\left( {y + 6} \right)^2} = 1$$. Then the equation of the circle, passing through $$C$$ and having its centre at $$P$$ is:
A
$${{x^2} + {y^2} - {x \over 4} + 2y - 24 = 0}$$
B
$${{x^2} + {y^2} - 4x + 9y + 18 = 0}$$
C
$${{x^2} + {y^2} - 4x + 8y + 12 = 0}$$
D
$${{x^2} + {y^2} - x + 4y - 12 = 0}$$
3
JEE Main 2015 (Offline)
+4
-1
The normal to the curve, $${x^2} + 2xy - 3{y^2} = 0$$, at $$(1,1)$$
A
meets the curve again in the third quadrant.
B
meets the curve again in the fourth quadrant.
C
does not meet the curve again.
D
meets the curve again in the second quadrant.
4
JEE Main 2015 (Offline)
+4
-1
Let $$O$$ be the vertex and $$Q$$ be any point on the parabola, $${{x^2} = 8y}$$. If the point $$P$$ divides the line segment $$OQ$$ internally in the ratio $$1:3$$, then locus of $$P$$ is :
A
$${y^2} = 2x$$
B
$${{x^2} = 2y}$$
C
$${{x^2} = y}$$
D
$${y^2} = x$$
JEE Main Subjects
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination