1
JEE Main 2022 (Online) 26th July Morning Shift
+4
-1

Let the tangent drawn to the parabola $$y^{2}=24 x$$ at the point $$(\alpha, \beta)$$ is perpendicular to the line $$2 x+2 y=5$$. Then the normal to the hyperbola $$\frac{x^{2}}{\alpha^{2}}-\frac{y^{2}}{\beta^{2}}=1$$ at the point $$(\alpha+4, \beta+4)$$ does NOT pass through the point:

A
(25, 10)
B
(20, 12)
C
(30, 8)
D
(15, 13)
2
JEE Main 2022 (Online) 25th July Evening Shift
+4
-1

If the ellipse $$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$$ meets the line $$\frac{x}{7}+\frac{y}{2 \sqrt{6}}=1$$ on the $$x$$-axis and the line $$\frac{x}{7}-\frac{y}{2 \sqrt{6}}=1$$ on the $$y$$-axis, then the eccentricity of the ellipse is

A
$$\frac{5}{7}$$
B
$$\frac{2 \sqrt{6}}{7}$$
C
$$\frac{3}{7}$$
D
$$\frac{2 \sqrt{5}}{7}$$
3
JEE Main 2022 (Online) 25th July Evening Shift
+4
-1

The tangents at the points $$A(1,3)$$ and $$B(1,-1)$$ on the parabola $$y^{2}-2 x-2 y=1$$ meet at the point $$P$$. Then the area (in unit $${ }^{2}$$ ) of the triangle $$P A B$$ is:

A
4
B
6
C
7
D
8
4
JEE Main 2022 (Online) 25th July Evening Shift
+4
-1

Let the foci of the ellipse $$\frac{x^{2}}{16}+\frac{y^{2}}{7}=1$$ and the hyperbola $$\frac{x^{2}}{144}-\frac{y^{2}}{\alpha}=\frac{1}{25}$$ coincide. Then the length of the latus rectum of the hyperbola is:

A
$$\frac{32}{9}$$
B
$$\frac{18}{5}$$
C
$$\frac{27}{4}$$
D
$$\frac{27}{10}$$
JEE Main Subjects
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination