Let the sum of the focal distances of the point $\mathrm{P}(4,3)$ on the hyperbola $\mathrm{H}: \frac{x^2}{\mathrm{a}^2}-\frac{y^2}{\mathrm{~b}^2}=1$ be $8 \sqrt{\frac{5}{3}}$. If for H , the length of the latus rectum is $l$ and the product of the focal distances of the point P is m , then $9 l^2+6 \mathrm{~m}$ is equal to :
Let one focus of the hyperbola $\mathrm{H}: \frac{x^2}{\mathrm{a}^2}-\frac{y^2}{\mathrm{~b}^2}=1$ be at $(\sqrt{10}, 0)$ and the corresponding directrix be $x=\frac{9}{\sqrt{10}}$. If $e$ and $l$ respectively are the eccentricity and the length of the latus rectum of H , then $9\left(e^2+l\right)$ is equal to :
Let the foci of a hyperbola be $(1,14)$ and $(1,-12)$. If it passes through the point $(1,6)$, then the length of its latus-rectum is :
Let the foci of a hyperbola $$H$$ coincide with the foci of the ellipse $$E: \frac{(x-1)^2}{100}+\frac{(y-1)^2}{75}=1$$ and the eccentricity of the hyperbola $$H$$ be the reciprocal of the eccentricity of the ellipse $$E$$. If the length of the transverse axis of $$H$$ is $$\alpha$$ and the length of its conjugate axis is $$\beta$$, then $$3 \alpha^2+2 \beta^2$$ is equal to