Let $$e_1$$ be the eccentricity of the hyperbola $$\frac{x^2}{16}-\frac{y^2}{9}=1$$ and $$e_2$$ be the eccentricity of the ellipse $$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, \mathrm{a} > \mathrm{b}$$, which passes through the foci of the hyperbola. If $$\mathrm{e}_1 \mathrm{e}_2=1$$, then the length of the chord of the ellipse parallel to the $$x$$-axis and passing through $$(0,2)$$ is :
Let R be a rectangle given by the lines $$x=0, x=2, y=0$$ and $$y=5$$. Let A$$(\alpha,0)$$ and B$$(0,\beta),\alpha\in[0,2]$$ and $$\beta\in[0,5]$$, be such that the line segment AB divides the area of the rectangle R in the ratio 4 : 1. Then, the mid-point of AB lies on a :
Let $$\mathrm{P}\left(x_{0}, y_{0}\right)$$ be the point on the hyperbola $$3 x^{2}-4 y^{2}=36$$, which is nearest to the line $$3 x+2 y=1$$. Then $$\sqrt{2}\left(y_{0}-x_{0}\right)$$ is equal to :