1
JEE Main 2025 (Online) 2nd April Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let one focus of the hyperbola $\mathrm{H}: \frac{x^2}{\mathrm{a}^2}-\frac{y^2}{\mathrm{~b}^2}=1$ be at $(\sqrt{10}, 0)$ and the corresponding directrix be $x=\frac{9}{\sqrt{10}}$. If $e$ and $l$ respectively are the eccentricity and the length of the latus rectum of H , then $9\left(e^2+l\right)$ is equal to :

A
12
B
14
C
15
D
16
2
JEE Main 2025 (Online) 22nd January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the foci of a hyperbola be $(1,14)$ and $(1,-12)$. If it passes through the point $(1,6)$, then the length of its latus-rectum is :

A
$\frac{25}{6}$
B
$\frac{144}{5}$
C
$\frac{288}{5}$
D
$\frac{24}{5}$
3
JEE Main 2024 (Online) 9th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the foci of a hyperbola $$H$$ coincide with the foci of the ellipse $$E: \frac{(x-1)^2}{100}+\frac{(y-1)^2}{75}=1$$ and the eccentricity of the hyperbola $$H$$ be the reciprocal of the eccentricity of the ellipse $$E$$. If the length of the transverse axis of $$H$$ is $$\alpha$$ and the length of its conjugate axis is $$\beta$$, then $$3 \alpha^2+2 \beta^2$$ is equal to

A
225
B
237
C
242
D
205
4
JEE Main 2024 (Online) 8th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$H: \frac{-x^2}{a^2}+\frac{y^2}{b^2}=1$$ be the hyperbola, whose eccentricity is $$\sqrt{3}$$ and the length of the latus rectum is $$4 \sqrt{3}$$. Suppose the point $$(\alpha, 6), \alpha>0$$ lies on $$H$$. If $$\beta$$ is the product of the focal distances of the point $$(\alpha, 6)$$, then $$\alpha^2+\beta$$ is equal to

A
170
B
171
C
169
D
172
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12