Let the hyperbola $$H: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$$ pass through the point $$(2 \sqrt{2},-2 \sqrt{2})$$. A parabola is drawn whose focus is same as the focus of $$\mathrm{H}$$ with positive abscissa and the directrix of the parabola passes through the other focus of $$\mathrm{H}$$. If the length of the latus rectum of the parabola is e times the length of the latus rectum of $$\mathrm{H}$$, where e is the eccentricity of H, then which of the following points lies on the parabola?
If the tangents drawn at the points $$\mathrm{P}$$ and $$\mathrm{Q}$$ on the parabola $$y^{2}=2 x-3$$ intersect at the point $$R(0,1)$$, then the orthocentre of the triangle $$P Q R$$ is :
If the length of the latus rectum of a parabola, whose focus is $$(a, a)$$ and the tangent at its vertex is $$x+y=a$$, is 16, then $$|a|$$ is equal to :
Let $$P(a, b)$$ be a point on the parabola $$y^{2}=8 x$$ such that the tangent at $$P$$ passes through the centre of the circle $$x^{2}+y^{2}-10 x-14 y+65=0$$. Let $$A$$ be the product of all possible values of $$a$$ and $$B$$ be the product of all possible values of $$b$$. Then the value of $$A+B$$ is equal to