The tangents at the points $$A(1,3)$$ and $$B(1,-1)$$ on the parabola $$y^{2}-2 x-2 y=1$$ meet at the point $$P$$. Then the area (in unit $${ }^{2}$$ ) of the triangle $$P A B$$ is :
Let P : y2 = 4ax, a > 0 be a parabola with focus S. Let the tangents to the parabola P make an angle of $${\pi \over 4}$$ with the line y = 3x + 5 touch the parabola P at A and B. Then the value of a for which A, B and S are collinear is :
Let PQ be a focal chord of the parabola y2 = 4x such that it subtends an angle of $${\pi \over 2}$$ at the point (3, 0). Let the line segment PQ be also a focal chord of the ellipse $$E:{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$, $${a^2} > {b^2}$$. If e is the eccentricity of the ellipse E, then the value of $${1 \over {{e^2}}}$$ is equal to :
If vertex of a parabola is (2, $$-$$1) and the equation of its directrix is 4x $$-$$ 3y = 21, then the length of its latus rectum is :