Let $$\mathrm{A}(0,1), \mathrm{B}(1,1)$$ and $$\mathrm{C}(1,0)$$ be the mid-points of the sides of a triangle with incentre at the point $$\mathrm{D}$$. If the focus of the parabola $$y^{2}=4 \mathrm{ax}$$ passing through $$\mathrm{D}$$ is $$(\alpha+\beta \sqrt{2}, 0)$$, where $$\alpha$$ and $$\beta$$ are rational numbers, then $$\frac{\alpha}{\beta^{2}}$$ is equal to :
Let $$R$$ be the focus of the parabola $$y^{2}=20 x$$ and the line $$y=m x+c$$ intersect the parabola at two points $$P$$ and $$Q$$.
Let the point $$G(10,10)$$ be the centroid of the triangle $$P Q R$$. If $$c-m=6$$, then $$(P Q)^{2}$$ is :
Let $$\mathrm{y}=f(x)$$ represent a parabola with focus $$\left(-\frac{1}{2}, 0\right)$$ and directrix $$y=-\frac{1}{2}$$. Then
$$S=\left\{x \in \mathbb{R}: \tan ^{-1}(\sqrt{f(x)})+\sin ^{-1}(\sqrt{f(x)+1})=\frac{\pi}{2}\right\}$$ :