Let $$P(a, b)$$ be a point on the parabola $$y^{2}=8 x$$ such that the tangent at $$P$$ passes through the centre of the circle $$x^{2}+y^{2}-10 x-14 y+65=0$$. Let $$A$$ be the product of all possible values of $$a$$ and $$B$$ be the product of all possible values of $$b$$. Then the value of $$A+B$$ is equal to :
Let $$\mathrm{P}$$ and $$\mathrm{Q}$$ be any points on the curves $$(x-1)^{2}+(y+1)^{2}=1$$ and $$y=x^{2}$$, respectively. The distance between $$P$$ and $$Q$$ is minimum for some value of the abscissa of $$P$$ in the interval :
The equation of a common tangent to the parabolas $$y=x^{2}$$ and $$y=-(x-2)^{2}$$ is
The tangents at the points $$A(1,3)$$ and $$B(1,-1)$$ on the parabola $$y^{2}-2 x-2 y=1$$ meet at the point $$P$$. Then the area (in unit $${ }^{2}$$ ) of the triangle $$P A B$$ is :