1
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
If $$a \ne 0$$ and the line $$2bx+3cy+4d=0$$ passes through the points of intersection of the parabolas $${y^2} = 4ax$$ and $${x^2} = 4ay$$, then
A
$${d^2} + {\left( {3b - 2c} \right)^2} = 0$$
B
$${d^2} + {\left( {3b + 2c} \right)^2} = 0$$
C
$${d^2} + {\left( {2b - 3c} \right)^2} = 0$$
D
$${d^2} + {\left( {2b + 3c} \right)^2} = 0$$
2
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
The eccentricity of an ellipse, with its centre at the origin, is $${1 \over 2}$$. If one of the directrices is $$x=4$$, then the equation of the ellipse is:
A
$$4{x^2} + 3{y^2} = 1$$
B
$$3{x^2} + 4{y^2} = 12$$
C
$$4{x^2} + 3{y^2} = 12$$
D
$$3{x^2} + 4{y^2} = 1$$
3
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
The normal at the point$$\left( {bt_1^2,2b{t_1}} \right)$$ on a parabola meets the parabola again in the point $$\left( {bt_2^2,2b{t_2}} \right)$$, then
A
$${t_2} = {t_1} + {2 \over {{t_1}}}$$
B
$${t_2} = -{t_1} - {2 \over {{t_1}}}$$
C
$${t_2} = -{t_1} + {2 \over {{t_1}}}$$
D
$${t_2} = {t_1} - {2 \over {{t_1}}}$$
4
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
The foci of yhe ellipse $${{{x^2}} \over {16}} + {{{y^2}} \over {{b^2}}} = 1$$ and the hyperbola $${{{x^2}} \over {144}} - {{{y^2}} \over {81}} = {1 \over {25}}$$ coincide. Then the value of $${b^2}$$ is
A
$$9$$
B
$$1$$
C
$$5$$
D
$$7$$
JEE Main Subjects
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEE
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Medical
NEET