If the equation of the parabola, whose vertex is at (5, 4) and the directrix is $$3x + y - 29 = 0$$, is $${x^2} + a{y^2} + bxy + cx + dy + k = 0$$, then $$a + b + c + d + k$$ is equal to
Let the eccentricity of an ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$, $$a > b$$, be $${1 \over 4}$$. If this ellipse passes through the point $$\left( { - 4\sqrt {{2 \over 5}} ,3} \right)$$, then $${a^2} + {b^2}$$ is equal to :
If m is the slope of a common tangent to the curves $${{{x^2}} \over {16}} + {{{y^2}} \over 9} = 1$$ and $${x^2} + {y^2} = 12$$, then $$12{m^2}$$ is equal to :
The locus of the mid point of the line segment joining the point (4, 3) and the points on the ellipse $${x^2} + 2{y^2} = 4$$ is an ellipse with eccentricity :